## Distributed Generation in Industrial Facilities

15 Nov 2011

Ram Bhaskar Director Energy Efficiency & Conservation Department National Environment Agency



#### **Presentation Outline**

- Distributed Generation
- Tri-generation
- Case study
- Conclusion

#### 

#### **Distributed Generation**

Embedded generators generating electricity primarily for onsite consumption and not to compete with gencos in the electricity market

#### Applications:

- Combined heat and power
- Emergency/Temporary power
- Price hedging

## Tri-gen Installations Supported by NEA

| Installations                               |           | Electricity<br>Output<br>(kWe) | Thermal<br>Output<br>(kWt)       | Cooling Output<br>(kWt) |
|---------------------------------------------|-----------|--------------------------------|----------------------------------|-------------------------|
| Mirco-turbine<br>tri-gen system             | Design    | 56                             | 310                              | 582                     |
|                                             | Operating | 38                             | 122                              | 388                     |
| Town gas fired<br>gas engine with<br>burner | Design    | 655                            | 339<br>+<br>556 (from<br>burner) | -                       |
|                                             | Operating | 570                            | 473                              | -                       |

## Tri-gen Installations Supported by NEA

| Installations                        |           | Electricity<br>Output<br>(kWe) | Steam Output<br>(MT/h) | Cooling Output<br>(kWt) |
|--------------------------------------|-----------|--------------------------------|------------------------|-------------------------|
| Natural gas fired<br>tri-gen plant 1 | Design    | 5,000                          | 12.7                   | 4,500                   |
|                                      | Operating | 4,600                          | 11.5                   | 4,750                   |
| Natural gas fired<br>tri-gen plant 2 | Design    | 10,000                         | 24.1                   | 14,068                  |
|                                      | Operating | 9,100                          | 24                     | 17,057                  |

#### Case Study Proposed Tri-gen System

- Electricity demand about 4MW
- Steam demand average 2.5 t/hr at 8 bar
- Hot water requirement of 350 kW at 60 deg C
- Cooling > 6000kWt

#### Generator sized to meet hot water demand

| Tri-generation System<br>Primary energy (Input) |      |            |                               |                   |                       |  |
|-------------------------------------------------|------|------------|-------------------------------|-------------------|-----------------------|--|
|                                                 | % PE | Power (MW) | Consumption per<br>year (MWh) | NG Cost (S\$)     | CO2 emission (tonnes) |  |
| Natural Gas                                     | 100% | 4.39       | 34,600                        | 2,430,000         | 6,370                 |  |
| Energy Production                               |      |            |                               |                   |                       |  |
|                                                 |      |            | COP/Extra Usage               | Yearly production |                       |  |
| Energy (Output)                                 | % PE | Power (MW) | (MW)                          | (MWh)             |                       |  |
| Electricity                                     | 41%  | 1.8        | 0.16                          | 12,900            |                       |  |
| Steam                                           | 18%  | 0.8        |                               | 6,300             |                       |  |
| Chilled water                                   | 16%  | 0.7        | 0.7                           | 3,850             |                       |  |
| Hot water                                       | 8%   | 0.34       |                               | 2,700             |                       |  |
| Losses                                          | 17%  | 0.75       |                               | <i>5,950</i>      |                       |  |
|                                                 | 100% | 4.39       |                               |                   |                       |  |

| Conventional System (separate production) |                           |                |                      |            |                          |
|-------------------------------------------|---------------------------|----------------|----------------------|------------|--------------------------|
|                                           | Consumption<br>(MWh/year) | Efficiency/COP | Energy<br>(MWh/year) | Cost (S\$) | CO2 emission<br>(tonnes) |
| Steam                                     | 6,300                     | 90%            | 7,000                | 492,100    | 1,300                    |
| Electricity                               | 12,900                    | 1              | 12,900               | 2,751,500  | 6,920                    |
| Chilled water                             | 3,850                     | 5              | 770                  | 164,400    | 410                      |
| Hot water                                 | 2,700                     | 98%            | 2,700                | 192,000    | 50                       |
| Total                                     |                           |                |                      | 3,600,000  | 9,130                    |

# Generator sized to meet steam Demand

| Tri-generation System<br>Primary energy (Input) |      |            |                               |                   |                       |
|-------------------------------------------------|------|------------|-------------------------------|-------------------|-----------------------|
|                                                 | % PE | Power (MW) | Consumption per<br>year (MWh) | NG Cost (S\$)     | CO2 emission (tonnes) |
| Natural Gas                                     | 100% | 8.78       | 69,200                        | 4,862,000         | 12,740                |
| Energy Production                               |      |            | COP/Extra Usage               | Yearly production |                       |
| Energy (Output)                                 | % PE | Power (MW) | (MW)                          | (MWh)             |                       |
| Electricity                                     | 41%  | 3.60       | 0.16                          | 27,100            |                       |
| Steam                                           | 18%  | 1.60       |                               | 12,600            |                       |
| Chilled water                                   | 16%  | 1.40       | 0.7                           | 7,700             |                       |
| Hot water                                       | 4%   | 0.34       |                               | 2,700             |                       |
| Losses                                          | 21%  | 1.84       |                               | 14,500            |                       |
|                                                 | 100% | 8.78       |                               |                   |                       |

| Conventional System (separate production) |            |                |            |            |              |  |
|-------------------------------------------|------------|----------------|------------|------------|--------------|--|
| Consumption                               |            |                | Energy     |            | CO2 emission |  |
|                                           | (MWh/year) | Efficiency/COP | (MWh/year) | Cost (S\$) | (tonnes)     |  |
| Steam                                     | 12,600     | 90%            | 14,000     | 984,000    | 2,580        |  |
| Electricity                               | 27,100     | 1              | 27,100     | 5,771,000  | 14,500       |  |
| Chilled water                             | 7,700      | 5              | 1,550      | 328,800    | 830          |  |
| Hot water                                 | 2,700      | 98%            | 2,700      | 192,100    | 500          |  |
| Total                                     |            |                |            | 7,275,900  | 18,410       |  |

#### Comparison

|                                                | Sized to meet hot water demand | Sized to meet steam demand |
|------------------------------------------------|--------------------------------|----------------------------|
| Energy Cost saving (S\$/yr)                    | 1,170,000                      | 2,413,900                  |
| CO2 Reduction (Tonnes/yr)                      | 2,760                          | 5,670                      |
| Annual O&M Cost (S\$/yr)                       | 200,000                        | 200,000                    |
| CAPEX Budget Forecast (S\$)                    | 5,280,000                      | 10,560,000                 |
| Payback Period (years)<br>(Including O&M cost) | 5.4                            | 4.8                        |
| Payback Period (years)<br>(Excluding O&M cost) | 4.5                            | 4.4                        |

Technology is an integral part of the evaluation

- Micro-turbine vs gas turbine vs gas engine
- There are multiple utilities to evaluate
  - Steam (heat), hot water, chilled water, dehumidification, electricity

• Each combination has implications on cost, savings, flexibility, carbon footprint, primary energy requirements

 Selection process is complex and needs to be matched to facility specific requirements

- Life-cycle analysis / cost-benefit analysis is equally complex and requires greater sophistication and detailed sensitivity analysis
  - Spark spread may vary over time, so ability to hedge market electricity prices will also vary
  - Offsetting cost of producing steam and other utilities has a bearing on overall project economics
  - Once investment is sunk, marginal operating cost considerations take over

- Sizing the plant is often key
  - Steam (heat) demand as sizing parameter appears most critical for best project economics and lowest carbon emissions
  - If heating demand varies, storage options should be considered to smooth requirements for better plant utilisation; same cannot be said with certainty for chilled water

 Relationship between desired steam parameters, technology, costs not well understood



• Confusion arises when overall thermodynamic efficiency is a consideration in decision making

• Meeting cooling requirements, i.e. chilled water, dehumidification, usually turn out to be of incidental concern

Same can be said for hot water

 Sizing for electricity requirement results in waste heat not being fully utilised and higher carbon emissions

All parasitic loads must be considered in evaluations

Auxiliary pumps, fans, gas booster pumps, etc

 Suitability of town gas for cogen or trigen is questionable – small spark spread, difficult fuel to manage

 Evaluate all this while keeping an eye on the electricity market regulatory environment

#### Thank you

Information on energy efficiency initiatives of E<sup>2</sup>PO is available at www.e2singapore.gov.sg